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Abstract

Special presymplectic manifolds are used to give a geometrical description
of Lagrangian and Hamiltonian systems on Jet bundles in terms of Lagrangian
submanifolds.

1 Introduction

The notion of special symplectic manifold was introduced by Tulczyjew around 1976
(see [18,19,14]). Special symplectic manifold theory gives a global description of La-
grangian and Hamiltonian formulations of Classical Mechanics. Indeed, a Hamiltonian
(resp. Lagrange) function generates a Lagrangian submanifold of some symplectic tan-
gent bundle and the local equations defining this submanifold are the Hamilton (resp.,
Euler-Lagrange) equations.

In a previous work (1,2] a geometrical picture of Lagrangian submanifolds in higher-
order mechanical systems was presented. In this paper we shall continue the description
of the above geometric formulation for first and higher-order Lagrangians in many
independent variables. A higher-order Lagrangian L in many independent variables is
defined on the tangent bundle of n*-velocities, T*Q of a given manifold Q, 1 < k < oo.
If L depends explicitly on the independent variables z € R™, then L is defined on
R™ x T*Q (Lagrangians of such types are considered in physical field theories, for
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instance). We note that the process is different from that adopted for higher-order
mechanics (i. e., n = 1), since we have no symplectic structures to use. Thus, we
shall use presymplectic structures and introduce the notion of special presymplectic
manifolds.

The paper is structured as follows. In section 2 we give some basic definitions
and notations necessary to make the text comprehensible. In section 3 we recall some
results for the ordinary situation. In section 4 we recall the notion of special presym-
plectic manifold introduced by Gotay and Nester [10]. In section 5 we examine the
situation corresponding to first-order Lagrangians in many independent variables. As
the process may be applied for Hamiltonians too we study the relation between both
theories in section 6. Section 7 deals with higher-order cases and we describe the
main differences with the first-order situation. We finish the work with the study of
Lagrangians depending explicitly on the independent variables.

2 Preliminaries

All manifolds and mappings are supposed to be of class C®. In general the summation
convention ou repeated index is adopted.

Let M be a manifold of dimension m and R™ the Kuclidean space with coordinates
(z) = (21,...y2n). Then T*M is the tangent bundle of n*- velocities of M, i. e. ,
the manifold of all k- jets of mappings from R" to M at the origin 0 € R". The manifold
TXM is locally characterized as follows : if (¢) = (¢',...,¢™) are local coordinates for
M then the coordinates {g,) = (¢',) are defined as follows, where 1 < 7+ < m and
a = (ay, ..., ay) is the multi-index of non-negative integers such that a; +... + a, < k,

k 1 aﬂl'l'u-"'an
%07) = TG )l Bag e (90 T aso -

where jéo is the k- jet at the origin 0 € R" of the map o : R — M.

The evolution tangent bundle of n*- velocities (for simplicity, the evolution
space) is R* x T*M = J*(R", M), the jet manifold of all mappings from R" to M.
Thus the local coordinates for R* x T*M are (z, ¢ ).

Now, let 7> M be the manifold of 1- jets of 2!l mappings from M to R™ with target
at the origin 0 € 2. Then we have R* x T*M = J'(M, R").

In what follows we only consider the cases & = 1 or 2, since the general situation
2 < k < oo only gives more complicated and tedious computations without introducing
any new result. As we may writte a = (ay) + (az) = (a3) + (a;),1 < a3,a; < n, with
(a) = (0,..,0,1,0,...,0), where 1 is in the a- th position, the local coordinates for
TIM,T:M,T2M,R* x T!M and R* x T*M will be denoted by

(qa QG), (qs pa), ((I, Ga, qub)a (:t, q, qa)a (37- g5 qa;s qab)
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repectively, where 1 < a,b < n and g4 = qu, (recall that we are omitting the index i).

Let k = n = 1. Then T{M = TM (resp. TfM = T*M) is the tangent (resp.
cotangent) bundle of M. If n = 1, then TFM = T*M is the tangent bundle of order
k of M (see [3]). We denote by 7oy : TM — M (resp. 7a : T*M — M) and
v @ T°M — M (resp. #p : ToM — M) for the bundle canonical projections.
The Liouville canonical form 0y, on T°M is the 1- form such that dfy = wys is the
canonical symplectic structure on T* M, i. e.

< u,0m(p) >=< Trp(u),p >,

for any u € T,T7°*M,p € T*M. Finally, we remark that a vector field on a manifold W
with local coordinates (y) will be locally represented by (y,6y) in place of Jy(;a%).

3 Lagrangian submanifolds and order-one mechanical sys-
tems

Let us recall the notion of special symplectic manifold (see [18,19,7]).

Definition 3.1 A special symplectic manifold is a quintuple (X, M,x, ), A) where
m: X — M is a fibre bundle, X\ is a l- formon X and A : X — T*M is a
diffeomorphism such that # = mp0 A and A = A0,

Now, let F: M — R be a function. Then the set

Np = {2 € X/ <u,A >=< Tn(u),dF >,for any u € T, X} (1)

is a Lagrangian submanifold of (X, d)), said to be generated by F. One has N =
(A" o dF)(M). The procedure is also valid when F is defined on a submanifold K of
M, i. e. , the set

Nrp={z€ X[n(z) € K, <u,A >=< Tr(u),dF >,

for any u € T,X and Tr(u) € T.K}, (2)

is a Lagrangian submanifold of (X, d)).
Now, take M = T*Q. Then the canonical symplectic form wg on T*Q induces a
diffeomorphism Bg : TT*Q — T*T*Q defined by

< u,Bg(v) >= wg(v,u),

for any u,v € TT*Q. In local coordinates we have Bg(q,p,4,p) = (q,p,p,
~¢q). Since r+g © Bg = 77+, if we define Bg = (Bg)*07+¢, then the quintuple
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(TT‘Q, T‘Qv Tr+Q, ﬂQa BQ)

is a special symplectic manifold. If H : T*Q — R is a Hamiltonian function on T*Q,
then the corresponding Hamiltonian vector field ¢y is defined by {y = Bg' o d(—H)
or, equivalently, by é¢,wq = —dH. In local coordinates we have

O0H 0H
gH(va) = (Qapa '5;"v "’8_q)

and the integral curves of £y satisfy the Hamilton equations :

. _OH . OH
q= ap sy p=— F) q
The Lagrangian submanifold of (TT*Q,dBq) generated by —H is denoted by Ny
and we have Ny = £g(T*Q).
Next, take M = TQ. Then there exists a canonical diffeomorphism Ag : TT°Q —
T*TQ such that 77g 0 Ag = T'mq ; Ag is locally given by Ag(q,p,4,p) = (¢, 4., p)
Thus, if we set ag = (Aq)*frq, we obtain a special symplectic manifold

(TT.Qa TQ’ T”Qa aQ, AQ)

One can check that the Lagrangian submanifold Ny of (TT*Q, dag) generated by
the Lagrangian function L : TQ — R is locally characterized by the Euler-Lagrange
equations corresponding to L :

Furthermore, we have N, = Ag' 0 dL(T'Q). If L is defined on some submanifold K
of TQ then the Lagrangian submanifold Ny generated by L is locally characterized by
the Euler-Lagrange equations with the constraints given by K.

In order to connect the Lagrangian submanifolds generated by L : TQ — R and
H : T*Q — R we proceed as follows. If L : TQ) — R is a Lagrangian function, we
consider the Legendre transformation

Leg:TQ — T°Q
locally defined by (see [7] for an intrinsical definition)

Leg(q,4) = (¢,p),

where p = 0L/0q. As we know, L is regular (resp. hyperregular) if and only if Leg is a
local (resp. global) diffeomorphism. If L is hyperregular, then we define a Hamiltonian
function H by H o Leg = Ey, where Ef, = pg — L. It is easy to see that Ny = Ny (see
(2] ; see also Section 6).
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4 Special presymplectic manifolds

Definition 4.1 A 2-form w of constant rank 2r on a (2r + s)-dimensional manifold
X is called a presymplectic form of rank 2r on X and the pair (X,w) is said to
be a presymplectic manifold. Ifs = 0, then w is a symplectic form and (X,w) a
symplectic manifold.

Let Y be a submanifold of a presymplectic manifold (X,w). The symplectic
complement TY* of TY in TX is a vector bundle over Y, whose fiber at each z € Y

is
(T.Y)' = {A € T.X/w(A, B) = 0, for anyB e T.Y}

Then Y is said to be a Lagrangian submanifold of (X,w) if TY* = TY (see
[10,17]). Its dimension is r + s.

Next let us recall the notion of special presymplectic manifold [10].
Definition 4.2 A special presymplectic manifold is o quintuple (X, M, =, ), A)
where # : X — M be is a fibre bundle, A isal-formon X and A: X — T*M
15 a submersion such that x = mp 0 A and A = A*0y. It follows that (X,dA) is a
presymplectic manifold with rank = 2(dim M).

Indeed, if (z*) are local coordinates for M, (z*,u") are fibered coordinates for X
and (z*,p') are the induced coordinates on T*M, then the Jacobian matrix for A is

= g
=\ 0 %} ,
where m = dim M. Since A*\p; = a, the matrix associated to da is

0 -2
Then rank B = 2m if and only if rank C = 2m.

As XA = A*0p implies that A*wys = d), then it is easy to see (like in the symplectic
case) that if F: M — R (resp. F: K C M — R) is a real function then the set Np
defined by (1) (resp. (2)).is a Lagrangian submanifold of the presymplectic manifold
(X,dX). We say that Np is generated by F.

Theorem 4.1 Let Q be an m- dimensional manifold. Then there ezists a canonical
submersion Ag : T)T*Q — T*T)Q such that the following diagram

N —4— r1ig

Tz TTiQ

" 1
n@
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is commutative, 1. e.

TTiQ © ‘EQ = T:ﬁ-Qa
where Tr7g is the prolongation of g : TnQ — Q to TaT:Q — Th Q.

Proof. First, let us recall that for any manifold M the bundle T} M can be canoni-
cally identified as a vector bundle space over M with the Whitney sumTM®..0TM
of TM with itself n times. In fact, let v € T)M. Then v = j}o for some o : R* — M.
Thus, if we define ¢, : R — M by a,,(t) = ¢(0,...,0,¢,0,...,0) , where t is in the
a-th position, 1 < a < n, one obtains n tangent vectors vy,...,v, at the same point
o(0) € M. Hence we writte v = (vy,...,v,). Locally, this identification is given by

(q’ g1y ooy Qn) = ((q’ ql), erey (q) qn))'

Also, we can identify the vector bundle T*M with the Whitney sum T*M &...6T*M
of T*M with itself n times. If a = ] .0 € ToM , for some f : M — R" such that
f(z) = 0 € R", then we set a, = J(zo)f where f" proof: M — R and pr, is
given by pra(z1,...,2,) = 24 € R. Thus, one obtains n 1 -forms aj, ..., a, at 2, i. e. ,
a, € T;M, 1 <a < n. In local coordinates the identification is given by

(@0 ,0") = ((¢:9"); -, (0, P")).

Now, we can define Ag. Let v € THT*Q). Then v € (T}).(T:Q) for some a € T:Q

,i. e , v = (U1,..,0,), where v, € To(T*Q),1 < a < n. Asa € T:Q, then

= (@1,..,an), With @, € T;Q,q € Q. Because of the above identifications, if

v, € To(T;Q) then v, € T, (T‘Q B.0TQ) =Ty, (T°Q)® ... T,,(T*Q) and so

Va = (Va1y .., Van), Where vy € T, (T*Q),1 < b < n, for each a. If u € T(T!Q) then

u e T(T}Q) 2 T,(TQs..8TQ) =T, (TQ)®...8T.,(TQ), where z = (21, ..., 2a), 24 €

T,Q,q € Q. Thus, we may set u = (uy,...,u,) With u, € T, (TQ). Now, we define Ag
by

n

(u’ A_Q(v)) Z(ua’AQ(vaa))

a=1

To end the proof, we sha.ll express Agi m local coordma,tes We have the following
bundle coordinates : : : : : .

ThQ : (a1, Gn)
T.Q: (g,p", .-, 0") A
TATRQ (4P s B 911 By s Bs o1 G ms Ps oer P

T*TQ : (¢,q15 -y qn, 7, 7, oy ™)
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So, if v € T}T:Q, then we represent v by

v= (q’pl’ eeey P“v QIx,p;p eoey P?l’ ooy Q/..,P},,, '°°ap7,)

and for a,b fixed, we obtain

Vg = (q)pl, s P q/.,p}‘,v '",p'['.)
Uap = (q’pbﬂ”up’;.)

Vg = (q’pa, Q/up7.)'

On the other hand, if u € TT!Q, then we put u = (q,q, ey Gy Ty 81y eens
s») and, for a fixed a, we have u, = (q,q,,7,3,).
Now, we set

/fQ(v) = (¢, q1y ey G, T, T, ey ).

Since
(um AQ(”M)) = ((‘I1 4, T, sa), AQ(% %, Y as P?,))
(2,90, 7 50), (4,974, 95, P*))
= rp‘/’° + 8.0,
we have

n

(u, Ag(v)) = Y_(rp5, + sap®)

a=1

As r,3y,..., 3, are arbitrary we deduce

r:Ep)‘o,ﬂ"’:p",lSaSn.

a=1

Therefore

AQ(q) pla s P Q/np},’ '-wp?, 3oy q/n’p}"’ ---»p;‘") =

n
(q7 Q/1: 29/ n> ZP;,:pla ---apn) .

a=1
This shows that Ag is a submersion and m119 0 Ag = T'7g. O
Corollary 4.2 The quintuple

(TJTJQ’ Tle’ T,}iq, aTiqQ. AQ);
where atig = (Ag)*0r1q is a special presymplectic manifold.
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5 Lagrangian submanifolds generated by a function L : TIQ —
R

Let L : T'Q — R be a Lagrangian function. Then L is a function depending on the
variables (¢,¢.) = (¢',¢,.-»¢.), 1 <a<n,1<i<m= dm@Q,i. e ,Lisan
order-one Lagrangian in many independent variables. We set

Ny = {z € T)T:Q/ < u,apq >=< TT 7q(u),dL >,
for any u € T,(TaTsQ)}.

Then Ny, is a Lagrangian submanifold of the presymplectic manifold
(TaT2Q,d ariq)-

The local equations defining N, are obtained in the following manner. Let u €
T.(T!T:Q). Thus,

u= (q$ pl, Y 4 q/np}la maP?,; --'sq/nap},n ---»P?n,
6q,8p*,...,6p", 6q/1,5p}1 yeery 6Py ens 6q/n,6p}n, w 6p7)

Also,
arig = (Aq)'0riq = (Ag)*(rdq+ n'dg; + ... + 7"dg,)
= (Xg=1P},)dq +p'dg), + ...+ p"dgy,
TTa7g(u) = (q,q/,, ,q/..,éq,&:/,, ,847.)
dL = dq + 2 dq1 + .+ a[‘ dgn
Thus,
<u,anq > = (Ze=1 p/¢)5q +pléq, + ...+ p"oq,

< TTirg(u),dL > = % 384 +3 6q/, + o+ B8y,
from which we obtain
JL o, 0L . oL n
6q —a;lp/a» aql =p v*--aaqn“p (3)

The Euler-Lagrange equations for a first-order Lagrangian L : T,Q — R in many
independent variables are :
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oL & d 0L

— e (==} = 4
Bq " 2 dz.,(aq.,) 0 (4)
and the generalized momenta are defined by
o_ OL
p = a e (5)

Thus (3) is equivalent to (4) and (5).
An analogous result is obtained if the Lagrangian L is defined in a submanifold K
of T, Q. We have a Lagrangian submanifold N, defined by

N = {z € T,T,Q/Ti7q(z) € K, < u,ag1q >=< TT}'xo(u),dL >,
for any u € T,(T7T7Q) and TT}xg(u) € T. K},

which is locally characterized by the Euler-Lagrange equations with constraints.
EXAMPLE 1

Let us consider an example given by the Lagrangian density for a continous one-
dimensional string

1, Oy dy
L=3le(5) =730,

where y : R? — R is a real smooth function in the variables (t,z) and the coefficients
o and 7 are constants. Then L is a real function defined on T}R expressed in our
notation by

L= 3{ol@) - r(@))

e ,¢=Y, 1 =Yy q2 =y, where y, = Oy/0t, y, = dy/0z. As Ny is characterized
by the points of T} T5 R where

<u,anp >=< TTywp(u),dL >

one obtains the following equalities :
P +p}, =0, p' =0q, P = —1qp,
which implies the well-known wave equation:
Py dty
(o) = T5) =0

(see [13,12]).



6 Lagrangian submanifolds generated by a function H : T;Q —
R

Let us now consider the jet bundle T;@Q). Then we define a canonical mapping
B : T,(T;Q) — T™(T; Q)

as follows : if v = (vy,...,05) € (THo(T2Q) , where a = (ay,...,a,) € T;Q then
Vs = (Va1y .-y Van) » Vab € Tap(T°Q) . Thus we have a canonical diffeomorphism By :
T, (T*Q) — T,,(T*Q) and we define

(X, BQ(”)) = zn:(j(l),a.7a’BQ(vaa)) )

a=1

where X = j) v € To(T;Q),Ya = (07 : R— T*Qand (, : T°Q®..0T*Q — T°Q
is the projection onto the a-th factor. Notice that (,(a) = a, and Bg(va,) € T3 (T°Q).
If (g,p*,I1,11°) are local coordinates for T*(7; Q) then we obtain

BQ(q’ pl’ ---apnsq/np}, ’ ---aP7,7 ey QIn)p},,’ '"77)7,.)

n
= (¢, Py By D PYr = rros —410)

a=1
Therefore, Bg is a submersion such that the following diagram
TAT;Q) —%— T"(T;Q)

TT3Q TTaQ
T:Q

is commutative. Thus, the quintuple

(THT:Q), T2Q, Fr:q, Briq, Bo),

where Br:q = (Bq)*01sq, is a special presymplectic manifold.
Let H : T;Q — R be a Hamiltonian function. Then the Lagrangian submanifold
Ny of (TH(T;Q),Br:q) generated by —H is locally defined by the following equations:

In order to establish a connection between the Lagrangian submanifolds generated
by L :T!Q - Rand H : T'Q — R we proceed as follows. If L : T})Q — Ris a
[.agrangian function then we may consider the Legendre transformation induced by L
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Leg : T,Q — T;Q
locally defined by (see [5] for an intrinsical definition)

aL oL
Leg(?v qa) = (qa b;) sy W)

Like in the standard situation, we say that L is regular (resp. hyperregular) if
Leg is a local (resp. global) diffeomorphism. Thus, if L is hyperregular, we define a
Hamiltonian function H by H o Leg = E;, where Ej, is given by

EL=3) p’q-L

a=1

(sec [5]). We remark that if L is regular, then H is only locally defined. A simple
computation shows that N, = Ng.

Remark 1.- The reader can check that the Lagrangian density considered in Example
1 is hyperrregular.

7 The higher-order theory

Let T;Q be the tangent bundle of n* -velocities of Q. As it is well-known there exists
a canonical inclusion

i:ThQ — TUTY'Q)

defined as follows. If jéo € TXQ, then j(j50) = jar , where r(z) = j& o, o.(y) =
olr+y), z,y e R*.
From Theorem 1, there exists a canonical submersion

Ap-ig: TH(TE'Q) — T*THTE'Q)
Thus, we obtain a special presymplectic manifold
(Tn' T;(T:- IQ)’ T,: (T:-IQ), Tr: ﬁT:-IQ yOTH(TE1Q) AT,‘:"Q)

Next, we consider the case k = 2. If (4,43,9/,,9a,,) are coordinates for T}(T1Q)
then the canonical inciusion

7:TiQ — TUTQ)
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is locally given by

j(q’ 9as qab) = (q, 9019/ qa/b)y

where ¢/, = 969a;, = 9ab-
Now, let L : T2Q — R be a Lagrangian of order 2. Then we have the following
illustrative diagram :

TITH(TIQ) —2B9—g+TY(T1Q)

TaTriq TTITIQ

Let V), be the Lagrangian submanifold generated by L of the presymplectic manifold
(TAT:(TAQ),daritig). We shall compute the local equations for Ni. We have the
following bundle coordinates :

T.Q : (9,94)
T’:(T"}Q) : (QY qa’pl’pl, i pn’ p:)
TJT;(T:Q)(% 9a, Pl)pcln sees pn’ p::’ q/m‘]a/bap;b,p}z/bv ceey P?,,,Pz,b)
T'}T,:Q : (qa 9ay 4/s» qa/b)
T*T(T2Q) : (4,98, 9/s» 9, T, 1%, 1%, T1)
The Lagrangian submanifold Ny, is defined by

Ny = {2 € T (T,Q) /T 7riq(2) € §(T2Q),
(v, aririq) = (TT}#1gu, dL), for any u € T,(T T (T1Q))
and T,7130(u) € T§(TT7Q)}

Since

AT,{Q(qa qa,Pl,P,l,, "'apn’p:; 9/ Qa/ba P},,a p;/b, --'ap7bvp:/b)
= (q1 92y 97459, IT, 1%, HOba Hab)a
where
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n
9/e = Qa,‘Ib/a = Qba,n = ZP?G, II* = Zpol ,HOb =p ,H“" _pd

a=1 bz=1
and

Orz(13q) = lldg + I°dg, + T™dg;, + %dg,,, ,
then we deduce

animq = (325, )dg + (Zm, + EP Mas + 3 pida,

a=1 a,b=1
Now suppose that

2= (0,900, Pas s P P23 4100 Gy 0 Bys Py o o P PR, )
u = (4,4, p",p}, P P33 915 90,5 Pyr Payy s s Py Pay
8,844, 6p',8p}, ..., &p", P2 64/,,64a,, » 6p}b,5pi/ 2 8B],1 6P3, ).

Since Ty #mig(z) € j(T?Q), we deduce that 9/s = @ + 9a;, = qab- Furthermore,

TT,711q(u) € Tj(TT?Q) implies that 64/, = 8gb , 84a;, = 8qas.
Then

(u,ami710) = (ZP/,)&H' (ZPG, + ZP )éqy, + ( Xn: p;)dgs,,

a=1 a=] a,b=1

On the other hand, we obtain

oL oL aL
1= O Qs —_ | ——
(TTi#(). 1) = ()64 + (5,60, + (55600

Hence we have

_a_L_ — 2": a aL z b + a _a_L_ — .0

aq B a=1 p/° ’ aq“ - b=1 P aq“b — R
The Euler-Lagrange equations for L are :

oL & d 6L 2 BL

e

=0
o dz:,,da:b aqa,,

3q ~ dz, 3q,,
with
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oL > d BL

P i

Ogas ' @ = dzy 3qab

Therefore

%,I," a..l d,,(a,: - _(aqﬂb))

— n _d_ —_n
- Za:l dzg pn - a=1 p;.
Furthermore, we have

8L _ n d (0L %)
894 b=1 dry\Bga + P

= D& B+ =S8, +0°

Consequently, the local equations defining Np are precisely the Euler-Lagrange
equations for L.

EXAMPLE 2

Let us consider the Lagrangian density for the free vibration of a beam
1, Oy, Oy,
L"2{o(at) _T(agz)}’

where y : R? — R is a real smooth function in the variables (,z) and o and 7 are
constants. Then L : T?R — R is expressed in our notation by

L=3{ol@)* - 7(en)'}

g=yv, @ =y = 0y/Ot, ga =y, = By/ 0z, q11 = yu = &y/0¢?,
q12 =421 = Ytz = 32?//375393, 922 = Ypz = azy/axz.

One easily deduces that Ny is a Lagrangian submanifold of the presymplectic man-
ifold (T; T;T; R, dags 73 5) locally characterized by

2
Pt =0,m, tp, =0q,p, +p, =0,
Pi=pl=p=0,p)=—Tqn,
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which implies the Euler-Lagrange equations :

aﬂ - rgfé =1
M ozt

(see [12]).

In higher order mechanics (n = 1, k > 1) [3] and in first order field theories
(n > 1, k = 1) [14], one has both Lagrangian and Hamiltonian descriptions, which
may be equivalent. In fact, if the Lagrangian is regular, the corresponding Lagrangian
submanifolds can be identified (see [2], for the higher order mechanics case). However,
in higher order field theories, that is for n > 1, k > 2, there is not an appropriate
Hamiltonian description. This problem has been the goal of many researchers (see
(3,4,4,6,8,9,11,15,16]).

8 The theory for order-one evolution spaces

Assume that L : R* x T'Q — R is an order-one Lagrangian depending explicitly on
the independent variables z € R®. We consider the canonical inciusion

i:R"xT,fQ——-»T,f(R"xQ)
defined by

i(z’jga) = jéav 5(:!:) = (z70($)) .

Hence : is locally given by

i(zm q’ qb) = ($¢, qa zab, ‘Ib),

where z,, = 62. From Theorem 1, we have 2 special presymplectic manifold
(T.T3(R* % Q), TA(R” x Q), T} rxg) ari(rrxq)s ARnxq) -
The fcllowing diagram illustrates the situation :
1. ARxq e
TnTn(Rn X Q)'_—-. Tn(Rn X Q)

T %Ry TT1(RmxQ)
Th (R x Q)

Ii

R x T,}Q-=L—--~R

117



Next, we shall compute the local equations of the Lagrangian submanifold N of
(TATy(R" % Q), dari(rexq)) generated by L. We have the following bundle coordinates

Ta(R" x Q) : (24,9, Tabs %)

Ti(R* x Q) : (24,4, (P )a, P)
TAT: (R X Q) : (24,4, (P7)3s *s 20, 4es (P75 P).)
T*THR" x Q) : (24, q, ZTap, @, (117)?, 11, (T1%)8, I1%)

Remark 2.- The superscript z means that these p’s are related to the independent
variables when a Lagrangian L is considered - see below.

Now, a straightforward computation shows that the local equations for N are

axa 2 a/,, e Zp/u ’aqa =

Hence we have

oL &, & d oL
EI-—ZP/" Zditb(aqb)

which implies

the Euler-Lagrange equations for L.

EXAMPLE 1 (continued)
The string’s Lagrangian density seen in Example 1 gives an example for the present
situation, if we consider the coefficients o and  as functions depending in the variable

z € R,i. e., Lis now a function defined on the submanifold RxT]R = Rx {0} xT} R
of the evolution space R* x T, R.

Let H: B* xT;Q — R be a Hamiltonian function. We can consider the extended
phase space T3(R" x ) and define a canonical projection p : T/ (R*x Q) — R*xT,;Q
by

p(j(lz,q),Of) = (‘Tyj;,o.f) )
where f(q) = f(0,q), ¢ € Q. If (z4,q.(p*)%, p*) are local coordinates for T:(R" x Q)

then we have
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P(Zar 4 (P°)%, P°) = (24,9, P°)

Now we define an extended Hamiltonian H* : T;(R* x Q) — R as follows :

H+(zm q, (P: :v b) = H(xav‘bpb) + Z(pz)l;

b=1

and we obtain the following diagram :

TITI(R™ x Q2222 e e (Re x Q)

TTa(R"xQ TT3(R"XQ)
T;(R* x Q)
N
rrxTQ 2 p

Then we have a Lagrangian submanifold Ny generated by —H* of the presym-
plectic manifold

(T2T2 (R x Q),d Brs(roxq)) »

where
Bry(RrxQ) = (BRrxq)"073(R7xQ)

Furthermore, the Hamilton equations for H+ are precisely the local equations defin-
ing Ny4 :

Sq _OH & _ oH ) _ oM

dz, Op*’ 8z, 8¢’ Ozx, " Oz,

The Legendre transformation defined by L (see [5])
Leg: R* xT,Q — R" x T:Q
is locally given by

oL oL
_Leg(zm q, qa) = (zﬂa q, 'BE, ceny 5(1_) .

Il we define H : R* x T:Q — R as in section 6 and H* as above, then a simple
computation in local coordinates shows that Ny == Ny,
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9 The theory for higher-order evolution spaces

Let k = 2 andL : R® x T?Q — R a Lagrangian function depending explicitly on the
independent variables z € R". Then we consider the canonical inclusion

[3

( _ !
R* x T2Q—1~R"* x T\(T}Q)—— TMR" x T'Q)

locally given by

"(zc, 4 Y4a, Qab) = (zd’ 4, 9as Tab, by Qab),

where z,, = 62. Then we obtain the following diagram :

TITS(R x TIQ) —2EXTA. 1ori(pe x T1Q)

Tr%pnu) RT(RxT1Q)
TR xT)Q)

‘¢
B x T2Q —-

Thus, we have a special presymplectic manifold

R

(TiTR* x TQ), THR" % ToQ), Ta# rex1i@) TR xT2Q)» ARPXTIQ) »

where ari(rrxT1Q) = (ARnxTAQ)fan‘(RnxTAQ). Next, we shall compute the local equa-
tions of the Lagrangian submanifold Ny generated by L of the presymplectic manifold

(TATs (R x T1Q),d ati(rexT1q))

We have the following bundle coordinates :

TATa (R x T3Q) : (Za) 4 4o (P7)s P Pl Ty Ges Qay o (P72 0 P PR, )
TTYR* x T}Q) : (24,9, 9oy Tay, s /s> 9ay, 0 (I1%)e, 11, I1e, (11°)°8, 1%, T1°%)

Thus, we obtain the local equations for Ny, :
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n

., oL . OL
2P, 15 =2 (P, P = P

b=1 9da =1 Oga

oL & ., oL _
axa—Z(p )a,b ’aq"

b=1

which implies the Euler-Lagrange equations for L :

aL X d 0L = & 8L

3 " &3 \ag) ,}; dz.dz Bg) = °

a=1

EXAMPLE 2 (continued)
If we consider o and 7 as functions depending on the variable z € R, then L will
be a function defined on the submanifold R x TZR of the evolution space R? x T2R.
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